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Abstract 
 One of the current three main thrust areas of the Collaborative Center of Control Science (CCCS) at The 
Ohio State University is feedback control of aerodynamic flows. Synergistic capabilities of the flow control team 
include all of the required multidisciplinary areas of flow simulations, low-dimensional and reduced-order modeling, 
controller design, and experimental integration and implementation of the components along with actuators and 
sensors. The initial application chosen for study is closed-loop control of shallow subsonic cavity flows. We have 
made significant progress in the development of various components necessary for reduced-order model based 
control strategy, which will be presented and discussed in this paper. Stochastic estimation was used to show that 
surface pressure measurements along with the reduced-order model based on flow-field variables can be used for 
closed-loop control. Linear controllers such as H∞, Smith predictor, and PID were implemented experimentally with 
various degrees of success. The results showed limitations of linear controllers for cavity flow with inherent 
nonlinear dynamics. Detailed experimental work further explored the physics and showed the highly non-linear 
nature of the cavity flow and the effects of forcing on the flow structure. 
 

1. Introduction 
The flow control team at the Collaborative Center 

of Control Science at The Ohio State University is 
developing tools for the systematic integration of 
feedback control with active flow control.  Feedback 
control is typically used to stabilize systems or to 
achieve a desired system output.  Possible benefits of 
the integration of feedback control with active flow 
control include separation control and virtual 
aerodynamic shaping.  The application chosen for 
initial study is the control of cavity flow resonance 
(Samimy et al. 2003a, 2003b) using a synthetic jet type 
of actuation near the top of the upstream wall of the 
cavity. The problem is relevant to the Air Force because 
of structural fatigue in weapons bays caused by cavity 

resonance. 
Several methods can be used to develop feedback 

control laws for flow control.  For instance, successful 
approaches to date make use of experimental data for 
the development of models of the fluid/actuator 
interactions (e.g. Traub et al. 2003, Patel et al. 2003).  
The advantage of this method is that the control law can 
sometimes be developed with a small amount of 
experimental data. The weakness of this and other 
approaches for the design of flow-control laws is that 
these laws are developed either on an ad-hoc basis or 
for a model that may not sufficiently capture the 
dynamics of the fluid/actuator interaction over a wide 
range of operating conditions and desired outputs.  In 
the case of cavity resonance, a more flexible approach 
of system identification has been used to develop low-
order models (Cattafesta et al. 2003, Rowley et al. 
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2003).  Cattafesta et al. (1997) demonstrated the utility 
of integrating feedback control by demonstrating that 
closed-loop control of cavity tones requires an order of 
magnitude less power than open-loop control. 

 The current effort is focused on a further step in 
the design of more general and robust control laws by 
introducing a systematic method for order reduction of 
models based on the Navier-Stokes equations and for 
the derivation of control laws based on these models.  
These simplified models must capture all the relevant 
dynamics and relationships between the various system 
components and enable the quantification of the control 
objective in terms of the system states.  To this end, it is 
usually necessary to consider states that represent 
additional relationships between the inputs and outputs 
or between other states.  Order reduction techniques are 
employed to reduce the dimension of the system 
described by the Navier-Stokes equations, a system of 
nonlinear partial differential equations, to a system 
modeled by a much smaller set of ordinary differential 
equations.  The reduced-order model is then used to 
design feedback control laws.  This approach has many 
advantages, foremost of which is the reduction of an 
infinite-dimensional system to a system consisting of 
only a few states. 

In our effort, work continues to complete one full 
cycle composed of obtaining the appropriate simulation 
data capturing the rich dynamics of the flow field, 
deriving a reduced-order model with well-defined 
input/output relationships, designing a corresponding 
control law, and the experimental validation of the 
overall system.  Quasi-three-dimensional simulations 
are required to correctly model the dynamics of the 
cavity, and several cases are underway.  In addition, 
two-dimensional simulation data are used to develop 
the order-reduction method based on Proper Orthogonal 
Decomposition.  An experimental facility has been 
constructed and tested for validation of the feedback 
control law, to characterize the actuator, and to provide 
data for physical understanding of cavity flows.  In 
addition, several ad-hoc control law designs have been 
implemented to demonstrate the utility of the 
experimental facility and provide useful data for 
studying the control authority of the actuator over a 
range of Mach numbers. 

A brief account of numerical simulation activities 
will be given in Section 2 followed by a description of 
the reduced-order modeling effort in Section 3. Control 
law design and experimental implementation of the 
controllers as well as some results on flow physics will 
be presented and discussed in Sections 4 and 5, 
respectively. Section 6 will provide a summary of 
activities and findings.   

2. Numerical Simulation 
 In order to develop reduced-order models for the 

flow, detailed flow field data are required. Ideally the 
data should provide a time history of the flow field in 
and around the cavity for numerous cases with and 
without forcing.  Computational fluid dynamics (CFD) 
is ideally suited for this task.  Time accurate CFD 
simulations are being performed using an explicit 
fourth-order accurate large-eddy simulation method 
(DeBonis & Scott 2002a, 2002b).  The solution is 
advanced in time using a low-dispersion Runge-Kutta 
method.  Spatial discretization is done using central 
differencing and the solution is filtered for stability 
using the method of Kennedy & Carpenter (1997).  The 
current simulations use Williamson’s three-stage 
Runge-Kutta scheme (1980) combined with fourth-
order differencing and a sixth-order filter.  The 
turbulent motion in the flow field is simulated with a 
hybrid approach.  The boundary layer upstream of the 
cavity is modeled using a Reynolds Averaged Navier-
Stokes (RANS) method to match the experimentally 
obtained boundary-layer thickness; the Baldwin-Lomax 
(1978) mixing-length model is used here.  In the cavity, 
the large-scale structures are computed directly and the 
small-scale structures are replaced with dissipation. 

Actuation is incorporated through a boundary 
condition on the upstream wall of the cavity, right at the 
cavity leading edge.  Experimental measurements of the 
actuator’s output, both with and without external flow, 
were used to characterize its effect (Debiasi and 
Samimy 2003).  A simple sinusoidal variation in 
velocity was found to be a good representation.  
Density is extrapolated from the domain and total 
enthalpy is conserved. 

Both two- and three-dimensional simulations are 
being used.  It is recognized that any direct simulation 
of turbulence cannot be done properly with 2-D 
simulations.  Using this 2-D approximation, the vortical 
structures are unnaturally constrained and cannot 
stretch or tilt.  However, these simulations are valid 
solutions to the 2-D Navier-Stokes equations and can be 
used to develop the reduced-order modeling techniques 
that will be applied to the more accurate 3-D solutions.  
Results of the two-dimensional simulations with and 
without forcing were previously reported (Samimy et 
al. 2003b), and the modeling efforts using these 
solutions are reported in the next section.  Three-
dimensional solutions that will more accurately portray 
the flow physics are currently underway.  

3. Reduced-Order Modeling  
To develop closed-loop control laws, a simplified 

model of the flow must be derived. The Navier-Stokes 
equations governing the flow are a set of highly non-
linear partial differential equations not suitable for such 
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purpose.  To this aim we adopted the Proper Orthogonal 
Decomposition (POD) method to derive low 
dimensional models by using numerically simulated 
data (Caraballo et al. 2003 and Samimy et al. 2003b). 
We utilized the snapshot method of Sirovich (1987) to 
obtain the eigenfunction or POD basis, ϕ n(x), of  the 
cavity flow from which the flow field instantaneous 
realizations q(x,t) can be reconstructed as: 

( ) ( ) ( )xxq n
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(3.1) 

where NPOD is the number of POD modes used. If the 
instantaneous realizations q(x,t) are available through 
numerical simulations or experimental measurements, 
the time coefficients, an(t), can be obtained as: 
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by projecting realizations onto the empirical 
eigenfunctions. 

In developing a reduced-order model, we are 
interested in estimating the flow evolution from a given 
state.  We therefore use the Galerkin projection method 
to derive a reduced system of ODEs from which the 
time coefficients an(t) in Eqn. 3.1 and hence the 
evolution in time of the flow from an initial state can be 
estimated. The governing flow equations, in this case 
the compressible form of the Navier-Stokes equations, 
are thus projected onto the POD basis and the system of 
ODEs so obtained is then truncated at the number of 
desired modes.  

While the full Navier-Stokes equations are solved 
in the numerical simulation discussed in Section 2, a 
simplified set of compressible, isentropic form (Rowley 
et al. 2001) is used to develop reduced-order models. 
Using the vector-valued norm approach, the equations 
for the conservation of mass and momentum can be 
written as:  
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where c is the speed of sound, ν  is the viscosity and γ  
is the ratio of specific heats. 

As discussed in Samimy et al. (2003b), our 
approach is to derive a reduced-order model for the 
system where the control input appears explicitly.  The 
details of this derivation can be found in (Efe et al. 
2003a, 2003b). After performing the Galerkin 
projection with the control or forcing input applied at a 
specific location of the flow domain, the following 
system of ODEs is obtained:  
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The constant coefficients b, c, d, e and f are obtained 
from the Galerkin projection while 
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is the control input applied at the forcing location. 
Defining the velocity of the forcing flow in the 
numerical simulation as V = A sin (2π  f t), with f and A 
respectively the forcing frequency and amplitude, and 
computing the corresponding temperature T for this 
flow (assumed isentropic) from the stagnation 
temperature, the components ( )tuΓ  and ( )tvΓ  are 
obtained as: 
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with α = 30o, while ( )tcΓ  is the nondimensional local 

speed of sound 1≈=
ci
RT

c
γ . 

To design the feedback controller, the systems of 
equations 3.4 can be recast in control theory notation as 

),()()( Γ+= aBaAta&   (3.7) 

where the matrices A and B have the following form 
(see Efe et al. 2003b): 
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where k is the mode number and i, j and k  = 1, 2,… n. 
As was discussed in Samimy et al. (2003b), we 

encountered some convergence problems in the solution 
of the system of ODEs obtained from the Galerkin 
projection for some of the flow cases. In addition to the 
least square method used in our previous work, an 
alternative method, based on the weak formulation of 
the governing equation, is being developed to 
understand and improve the solution. A brief discussion 
of this formulation and of how it may address potential 
issues relevant to our problem is given in the following. 

There are two difficulties associated with the 
reduced-order model described above.  One is that this 
model requires second order spatial derivatives of the 
POD basis functions.  Since higher order POD modes 
can be very oscillatory, the accurate numerical 
approximation of their second order derivatives can be 
quite difficult.  As a result, errors may be introduced 
into the model if high order modes are included.  The 
second difficulty is associated with the control location 
in the cavity geometry.  In our case, the control entry is 
located strictly on the boundary of the cavity.  The 
method used to extract control inputs in the reduced 
order model above relies on a repartitioning of the 
geometry, namely the underlying fact that   

),(gfor   ,
11 \

Ω∈∫∫ +=∫
ΩΩΩΩ

2Lggg dxdxdx
        (3.10) 

where Ω1 is the portion of the domain over which the 
control is located, i.e., g(t,x) = u(t) for x∈ Ω1 and u(t) is 
the control.  This repartitioning is suited well for the 
case of distributed control, i.e., the control over a 
positive area or volume.  However, in the case of 
boundary control, the efficacy of this partition is less 
apparent as the control domain Ω1 has zero measure 
and, as a result,   

∫ =
Ω1

.0dxg                (3.11) 

Therefore, it is somewhat unclear how well the control 
input of the reduced order model can be extracted via a 
repartition in this case. Extension of the control from 
the boundary to a distributed region of positive measure 
may change the problem significantly.  

The weak formulation of the reduced order model 
provides a natural means to overcome the difficulties 
described above as it reduces the derivative 
requirements and provides a way to extract control 
inputs when the control is located on the boundary.  
The basic idea behind the weak formulation is to 
integrate the reduced-order model by parts.  The control 
input can be made explicit in the resulting boundary 
terms while only first-order spatial derivatives of the 
POD modes are required by the weak form.  To 

determine the feasibility of this approach, we applied it 
to a simple 1-D heat equation, an initial boundary value 
problem.  Control inputs entered the problem in the 
form of Dirichlet boundary conditions.  We developed a 
POD model for the problem and constructed its weak 
form. We then considered a linear quadratic regulator 
control formulation for the weak POD model.  We 
specified that the solution track a given reference 
signal.  The feedback control obtained through this 
formulation was very effective when applied to the 
reduced-order model and tracking was easily achieved.  
To determine the effectiveness of the reduced-order 
control in the “real” full order problem, we 
implemented the reduced-order feedback control in the 
full-order simulation.  The reduced-order control was 
effective there as well.  The full-order simulation with 
the reduced-order feedback control tracked the 
reference signal very well.  This was the case even 
when the reduced-order control was determined from a 
weak POD model consisting of only three modes.  
Specific details about this problem and its control are 
the subject of a forthcoming paper.  We are now 
extending these ideas to the cavity flow problem. 

3.1 Feedback Control with Surface Pressure as 
the System Output 

In practical applications, a surface variable, such as 
surface pressure, will be measured. The reduced-order 
model, on which the controller law is based, must use 
this measurement data to find the state of the flow and 
then to determine the actuator action. Therefore, the 
reduced-order model must be based on the surface 
pressure, or, on the flow field variables (e.g. the flow 
velocity). In the latter case, a relation between the flow 
variables and the surface pressure must be established 
first. To obtain a relation between the surface pressure 
and the flow field velocity within the cavity flow, we 
used the stochastic estimation method with the 
numerically simulated data. The stochastic estimation 
method was developed by Adrian (1977) to capture 
coherent structures in turbulent flows, and it has been 
used by many researchers in various flows (e.g. Adrian 
and Moin 1988, Cole et al. 1991, Cole and Glauser 
1998).  Several researchers used it as a complementary 
technique to obtain the POD time coefficients; for 
example, in subsonic jets (e.g. Picard and Delville, 
2000) and in cavity flows (Murray and Ukeiley, 2003). 
The procedure followed here is similar to that of 
Murray and Ukeiley (2003).   

The estimation is obtained using known surface 
pressure and flow field variables (velocities) from 
simulation results. The goal is to obtain a set of 
coefficients that will correlate these two sets of 
variables and will allow the estimation of the flow field 
variables based on the time dependent measured surface 
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pressure. The stochastic estimation provides the 
following relation: 

L++

+=

)()()(

)()()()(~

tPtPtPE

tPtPDtPCtq

srpijprs

mlijlmkijkij
        (3.12) 

where ijq~  is an estimated flow variable vector 
(velocity), Pk is the instantaneous pressure at the 
surface of the cavity. The subscript indices i and j 
represent the different spatial locations, and k, l, m, p, r, 
s, … correspond to the selected surface pressure 
locations (from 1 to the total number of pressure 
locations). The coefficient matrices (C, D, E, …) for the 
stochastic estimation are obtained from the correlation 
of the instantaneous flow field with the surface 
pressure, with zero lag, and by minimizing  the mean 
square error between the real value qij and the estimated 
one ijq~   

[ ]2~
ijijij qqe −=                         (3.13) 

In Eqn. 3.12 we retained both the linear and the 
quadratic terms since the latter significantly improved 
the results. In our test we considered only four surface 
pressure measurement locations, three within the cavity 
floor and one on the wall of the incoming flow, without 
optimizing their location or number.  The equations 
correlating the two velocity components and the speed 
of sound in the cavity to the four measured surface 
pressures at a given time, tr are  
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It should be noted that in Eqn. 3.14 the (estimation) 
coefficient matrices differ for each of the flow variables 
used in the reduced-order model. This set of equation 
gives the instantaneous state of the flow over the entire 
cavity, based on the pressure at the four sensing 
locations.  

We tested the estimation procedure above using the 
numerically simulated pressure and velocity data. 
Taking the pressure at any given time at the four 
locations, the velocity field at every location in the field 
was estimated using Eqn. 3.14. Then the time 
coefficients corresponding to this state were obtained 
by projecting the estimated velocities onto the POD 
basis for each variable using Eqn. 3.2. These estimated 
time coefficients can then be used as the initial 
condition to solve the system of ODE’s to obtain the 
evolution of the time coefficients (Eqn. 3.4). Finally, 
the advanced state of the flow can be predicted using 
the resultant time coefficients in the POD 
approximation, with Eqn. 3.1.

 
As a result, it would be 

possible to compare the state obtained for the flow with 

the desired state and hence to design a control 
algorithm that modifies the flow accordingly. A 
simplification in the comparison would be obtained if a 
value for the pressure at any of the sensing locations 
used for control purposes could be obtained from the 
state predicted for the flow. For this purpose an

 additional relation between the pressure P at each 
sensing location and the estimated/predicted time 
coefficient an corresponding to the nth POD mode can 
be obtained by using stochastic estimation. In this case 
linear terms are sufficient for good results, and the 
estimated pressure can be obtained as

    
)()(~ taMtP n

n=                      (3.15) 

where Mn is the estimation coefficient matrix between 
the pressure and the nth time coefficient. The results 
obtained for the estimated pressure show that between 3 
and 5 time coefficients are sufficient to obtain a good 
estimate of the pressure.  

In summary, after all the coefficient matrices have 
been calculated from numerical simulation data, the 
procedure to obtain the flow field behavior, velocities 
and pressure at the measuring location, based on the 
pressure to control the flow, would be as follows: 

1. Measure the pressure at the sensing locations. (We 
have not yet optimized the number or the locations 
of the pressure sensors). 

2. Estimate the instantaneous velocity field, based on 
the quadratic stochastic estimation. (Eqn. 3.14) 

3. Calculate the instantaneous time coefficient (Eqn. 
3.2) corresponding to the estimated velocity field 
that will be used as the initial condition for the 
system of ODE’s. 

4. Solve the system of ODE’s (Eqn. 3.4). 
5. Reconstruct the flow field using the POD 

approximation (Eqn. 3.1) 
6. Obtain the estimated pressure at one or more of the 

locations in step 1 using (Eqn. 3.15). 
7. Compare the predicted pressure with the desired 

one to define the appropriate control action. 

3.2 Sample Results 
In Figure 3.1 we present the first time coefficient 

obtained from the solution of the system of equations 
3.4 with the explicit control input using the first five 
POD modes. It can be seen that, at least for the first 4 
cycles, the solution converges very well for the baseline 
(unforced) case as well as for forcing with velocity 
amplitude A = 40 m/s at the two frequencies of f = 500 
and 900 Hz. A phase shift can be detected after four 
cycles which gradually increases over time while the 
coefficient amplitude remains unchanged. Similar 
results were observed for higher numbers of modes, but 
as was noticed before (Samimy et al. 2003b), after 12 
modes the system diverges rapidly. 
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Figure 3.2 shows a comparison of the first time 
coefficient for the baseline case obtained using the first 
five POD modes in three different ways. The original 
(thick line) corresponds to the value obtained from the 
numerical data by projecting the flow field onto the 
POD basis using Eqn. 3.2. The second (dashed) line 
was obtained using Equation 3.4 and using the actual 
velocities of the first snapshot as the initial condition, as 
in Figure 3.1. Finally, the last (thin) line was obtained 
by using the estimated velocity field, based on the four 
pressure measurements for the first snapshot and the 
quadratic estimation (Eqn. 3.14) to define the initial 
condition for the system of equation. It can be observed 
that the results obtained from the estimated state based 
on the pressure measurements reproduce the behavior 
of the system based on the velocity information of the 
first snapshot. Figure 3.3 shows that the same behavior 
is obtained for the two forced cases.  

Figures 3.4 and 3.5 present the results of the 
estimated pressure at the center of the cavity floor, Eqn. 
3.15. These plots were constructed similar to Figures 
3.2 and 3.3. As in the case of the first time coefficient, 
it can be noticed that with the stochastic estimation the 
pressure signal follows the original value very well for 
all three cases. These encouraging results indicate that 
it should be possible to identify the state of the flow 
from a few pressure measurements and to estimate the 
pressure at the control location such that a suitable 
controller could be designed and tested. 

4. Controller Design 
In this section, we briefly summarize the results 

presented in our companion paper Yan et al. (2004), 
which deals with real time control of cavity flows. We 
already saw in Section 3 that the system (cavity flow) is 
represented by a set of nonlinear partial differential 
equations, which makes it difficult to exploit the 
powerful tools of classical control theory directly. For 
this reason, several approaches have been considered 
for obtaining a reduced-order dynamical model 
amenable to control design. While we continue 
developing the nonlinear reduced-order model 
described in Section 3, we are also considering other 
possible representations of cavity flow dynamics, and 
deriving simple controllers. 

A linear model for cavity flow oscillations was 
proposed by Rowley et al. (2002a, 2002b, 2003). It 
handles the modeling problem from a decomposed 
process physics point of view. More explicitly, 
associated dynamical components (e.g. acoustics 
feedback, shear layer instability, receptivity, acoustic 
scattering) are individually modeled. Furthermore, 
Yuan et al. (2003) have shown that the parameters of 
such a delay based linear model can be tuned in such a 

way that its open loop system response to a white noise 
input fits given experimental data. 

For the above-mentioned linear model, we 
designed simple linear controllers such as PID 
controller, Smith predictor based controller, and H∞ 
controller. Experimental results summarized in the 
companion paper, Yan et al. (2004), outline two 
important conclusions: (i) all three linear controllers 
derived from a linear plant model for a single dominant 
Rossiter mode are able to suppress the cavity 
oscillations at this mode, but they shift the oscillations 
to another Rossiter frequency, which was not present 
explicitly in the unforced (open loop) case; and (ii) 
adding a zero to the simplest of these controllers, 
proportional controller, avoids this problem, provided 
that the location of the zero matches the newly excited 
Rossiter mode mentioned above. 

From these observations, it is obvious that the 
linear models are not “rich enough” to capture the 
dynamical system behavior when the feedback loop is 
closed. Hence, we turn our attention to nonlinear 
models, such as the one derived in Section 3. Now our 
immediate goal is to analyze this nonlinear input-state-
output model, and develop new control design 
techniques for it. Recall that this nonlinear system is 
obtained from Proper Orthogonal Decomposition, with 
a dense grid and sufficient number of snapshots from 
the process. In this case, modeling errors are relatively 
small, if sufficiently large number of modes is used. 
Unfortunately, a POD model cannot synthesize a 
behavior whose signature is absent in the snapshots. 
This results in a locality problem, which can be solved 
by interpolating different POD models that are valid for 
different operating conditions. One of our plans is to 
use fuzzy decision mechanisms to interpolate different 
POD-based models. This approach has been 
demonstrated successfully on a system represented by 
the 1-D Burgers equations (Efe et al. 2004a). Control of 
interpolated POD-based nonlinear models is in our list 
of long-term goals.  

Another approach to modeling of aerodynamic 
flows is the use of neural networks, which are 
inherently nonlinear. Given a set of input-output data 
(e.g. excitation voltage applied to the actuator, and 
pressure readings at several points on the cavity 
floor/wall) we can develop a neuroidentifier that 
imitates the input-output behavior of the actual system. 
This neural structure may have arbitrary number of 
inputs (down to a finite delay depth in discrete time), 
arbitrary number of hidden layers, and arbitrary number 
of hidden neurons. There are a set of choices for 
nonlinear activation functions and the training schemes. 
The goal is to set and train a network structure, which 
has the simplest topology with acceptable performance. 
A neuroidentifier has already been implemented by 
using limited experimental data; preliminary results are 
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presented in Efe et al. (2004b). The design of 
neurocontroller under the presence of neuroidentifier is 
also possible under certain conditions; see Narendra 
and Parthasarathy (1990). We also plan to design such a 
controller.  

5. Experiments 
In this section, we briefly discuss the experimental 

activities and present some experimental results 
obtained up to date at the Gas Dynamics and 
Turbulence Laboratory (GDTL) at OSU as part of the 
CCCS flow control activities. The experimental facility 
used in this study is described in more detail in Debiasi 
and Samimy (2003). It consists of an optically 
accessible, blow-down type wind tunnel capable of 
continuous operation in the subsonic range with the 
present set up and in the supersonic range by 
exchanging the nozzle. The air, supplied by two four-
stage compressors, is conditioned in a stagnation 
chamber before entering the square test section (with 
width W = height H = 50.8 mm) through a smoothly 
contoured converging nozzle, Fig. 5.1. A cavity that 
spans the entire width of the test section is recessed in 
the floor with a depth D = 12.7 mm and length L = 50.8 
mm for an aspect ratio L/D = 4.   

The cavity shear-layer is gently forced by a 2-D 
synthetic-jet type actuator with an average 
actuator/main flow momentum ratio, Cµ, of about 2⋅10-4 
issuing from a high-aspect-ratio converging nozzle 
embedded in the cavity leading edge and exhausting at 
an angle of 30o with respect to the main flow through a 
1 mm slot spanning the entire cavity. Actuation in the 
frequency range 1-20 kHz is provided by the titanium 
diaphragm of a Selenium D3300Ti compression driver. 
Debiasi and Samimy (2003) observed significant 
variations of the amplitude of the velocity fluctuations 
at the exit slot with forcing frequency. As it will be 
shown, the effect of forcing amplitude is relatively 
minor and affects the control authority only at higher 
Mach numbers.  

Pressure fluctuations were measured by dynamic 
pressure transducers placed in different locations in the 
test section. The reference signal was obtained by a 
Kulite XTL-190-25A transducer flush-mounted in the 
middle of the cavity floor. A dSpace 1103 controller 
board connected to a Dell Precision Workstation 650 
computer was used to acquire this signal at 50 kHz 
through a 12-bit channel and to manipulate it to 
produce the desired control signal from a 14-bit output 
channel. In order to maximize the control board 
performance, its processor was used exclusively for 
running the control routines. Simultaneous recording 
consisting of 262,144 samples each were obtained 
through a 16-bit resolution acquisition board (National 
Instruments PCI-6036E) operating independently in the 

computer. Each recording was band-pass filtered 
between 200 and 20,000 Hz to remove spurious 
frequency components and acquired at a sampling 
frequency of 200 kHz. By using the Kulite sensitivity of 
4 mV/psi and accounting for the amplifier gain setting, 
the voltage values of the timetraces were converted to 
non-dimensional pressure referenced to the commonly 
used value of 20 µPa. Eight narrowband power spectra 
were computed using a 32,768-point fast Fourier 
transform, which provided a spectral resolution of about 
6 Hz, converted to Sound Pressure Level (SPL) spectra, 
and then averaged. 

The instantaneous features of the flow in a 
streamwise plane at the test section centerline were 
obtained by the scattering of a laser light sheet from a 
Continuum Nd:YAG pulsed laser operating at a 
wavelength of 532 nm and entering the test section 
from an optical window on the top wall of the tunnel. 
Smoke entering the cavity from a streamwise slot at the 
floor of the cavity was used for flow visualizations. 
This technique was found to be superior to using laser 
induced fluorescence from trace acetone molecules 
seeded into the main flow. Images were acquired using 
a Princeton Instruments (now Roper Scientific) ICCD 
camera. The camera and the laser were synched to a 
reference signal for acquisition of phase-locked images. 
In the case of forced flow the reference signal was the 
actuation voltage. In the case of unforced flow (baseline 
flow) the reference signal was the voltage generated by 
the vibrating actuator diaphragm/voice-coil assembly 
picking up the cavity flow resonance. This technique 
produced a smooth signal retaining only the main 
pressure fluctuations while naturally rejecting other 
noise components. For every flow condition explored, 8 
sets of phase–locked images were obtained, each 
corresponding to an incremental phase shift of 1/8 of 
the resonant or forced period. Ensemble average images 
were obtained from the individual images of each set. 
When run in sequence these average images produce 
short duration movies illustrating the evolution of the 
shear-layer characteristics during a cycle. 

5.1 Actuator Authority, Flow Controllability, 
and Cavity Non-linear Dynamics 

Debiasi and Samimy (2003) explored the resonant 
flow characteristics of the experimental apparatus, Fig. 
5.2, and introduced a logic-based control process based 
on the experimental observations. This process looks 
for the forcing frequencies that could significantly 
reduce the noise spectral peak and maintains the system 
in such conditions until changes in flow conditions (e.g. 
a change in the flow Mach number) and thus spectral 
peak level triggers a new search. As summarized in Fig. 
5.3, this control technique performed remarkably well 
as it was able to reduce strong cavity-flow resonant 
peaks in the Mach 0.25-0.5 range explored. From this 
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figure, we first note that the intensity of the actuation 
voltage (i.e. the effect of the forcing amplitude) is 
insignificant for flows up to about Mach 0.4. At higher 
Mach numbers, especially above Mach 0.45, the 
original resonant peak is much stronger and only 
intense actuation at 4 or 5 Vrms is capable of producing 
a peak reduction of 10 dB. This could be a result of the 
substantially increased low-frequency noise floor and 
spectral peaks at higher Mach number. This issue will 
be further explored in the future. 

In an attempt to better understand the physics of 
the forcing mechanism exploited by the logic-based 
controller, we explored in detail its effects by forcing 
some flows with frequencies in the 1-6 kHz range. The 
flows selected were chosen to be below Mach 0.4 to 
rule out the effect of forcing amplitude discussed 
above. Figure 5.4 summarizes the results obtained by 
sweeping the forcing frequency with 10 Hz increments 
in the Mach 0.3 single-mode resonant flow (which 
resonates at 2.8 kHz, identified by a dot in the figure). 
For this flow the SPL peak values are significantly 
reduced by forcing at frequencies in the neighborhood 
of 3.3, 3.5, and 4.0 kHz. It is also noteworthy that these 
frequencies do not correspond to the values for which 
the actuator velocity, measured at the exit slot by a hot-
film, is high (see also Debiasi and Samimy, 2003). This 
confirms the previous observation that below Mach 0.4 
only a small excitation is necessary to force the flow in 
its receptivity region. 

A better appreciation of the effect of the forcing 
frequency can be obtained by arranging and running the 
SPL spectra results in a movie-like sequence, from 
which the peak values shown in Fig. 5.4 were obtained. 
In Fig. 5.5 we present a few samples of such spectra. 
Figure 5.5 (a) is the unforced (baseline) Mach 0.3 flow, 
which is dominated by a 132 dB resonant peak at about 
2.8 kHz corresponding to the 3rd Rossiter mode 
(Debiasi and Samimy 2003). Actuation at 1.0 kHz, Fig. 
5.5 (b), did not modify the resonant peak, but 
introduced several other peaks at the forcing frequency, 
its first harmonic as well as at two frequencies 
corresponding to a linear combination of the forcing 
frequency and the third Rossiter mode (their difference 
and sum). These non-linear dynamics can be observed 
for other forcing frequencies in Fig. 5.5 (c) and (d) 
where the resonant peak remains unchanged but other 
peaks appear that correspond to harmonics of the 
forcing frequency and/or its sum/difference with the 
Rossiter frequency. Forcing at the frequency of 1.83 
kHz, corresponding to the second Rossiter modes, Fig. 
5.5 (e), destroys the natural feedback mechanism 
associated with the third Rossiter mode and excites the 
lower second mode and its harmonics. Finally forcing 
at 3.92 kHz, Fig. 5.5 (f), produces a spectrum devoid of 
any strong tone where the most significant features are 
a remnant of the original resonant peak and a modest 

forcing peak. This case corresponds to one of the 
optimal forcing conditions discussed above and in 
Debiasi and Samimy (2003). Analogous results, not 
presented here, were obtained for other flow conditions 
with single or multi-mode resonance and exhibit similar 
non-linear coupling effects of the forcing input with the 
natural Rossiter modes. 

5.2 Flow Visualization Results 
We used the phase-locked, laser-imaging technique 

outlined earlier to visualize the effect of forcing on the 
flow structure. Images of this kind are very useful to 
verify the modal behavior of the cavity flow and to 
provide data for development of accurate numerical 
simulations codes. In Fig. 5.6 we present some selected 
images corresponding to the forcing cases discussed 
above. The images on the left are instantaneous (with 9 
ns exposure time) while the ones on the right are the 
corresponding phase-averaged images (average of 
about 40 instantaneous images). In all images the flow 
is from let to right. 

Figure 5.6 (a) and (b) correspond to the baseline 
(unforced) Mach 0.3 resonant flow. In both images, 
three coherent shear-layer structures are clearly visible 
as expected for the 3rd Rossiter mode at which this flow 
resonates. Figures 5.6 (c) and (d) refer to the same flow 
excited at 1830 Hz. i.e. at the second Rossiter mode. As 
a result two large coherent shear-layer structures are 
clearly visible in the pictures. This visually confirms 
the comments made with respect to the spectrum of Fig. 
5.5 (e), i.e. that forcing at this frequency destroys the 
natural feedback mechanism for the third Rossiter mode 
and excites the flow at this lower mode. Figures 5.6 (e) 
and (f) present the Mach 0.3 flow forced at 3.92 kHz, 
an optimal frequency for reducing the spectral peaks. 
This frequency, about 4/3 of the original resonant one, 
is close to the fourth Rossiter mode and as a result four 
shear-layer structures are clearly visible in the pictures. 
Inspection of all the images obtained for this forcing 
frequency at various phases of the cycle do not reveal 
any indication of mode switching since four structures 
remain clearly visible at all times. 

Figure 5.7 (a) and (b) are respectively the SPL 
spectrum and the phase-locked average image of the 
multi-mode resonating Mach 0.32 flow without forcing.  
Due to the continuous switching between the second 
and third Rossiter modes (observed in instantaneous 
images), in Fig. 5.6 (a) no single mode locks-in to 
dominate the spectrum (Cattafesta et al. 1997, 1998; 
Williams et al. 2000). The average image obtained by 
phase-locking at the frequency of 3220 corresponding 
to one of the small peaks visible in Fig. 5.6 (a) does not 
reveal repetitive shear-layer structures, a finding 
consistent with the mode-switching mechanism. 

Comparison of Figs. 5.5 (e) and (f) and Fig. 5.6 (d) 
seems to rule out that optimal frequency forcing 
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induces in the system a state similar to multimode 
resonance. Additional insight is therefore necessary to 
ascertain the nature of peak noise reduction associated 
with the forcing at some frequencies. 

5.3 Results from the Implementation of PID 
Controller 

As was briefly discussed in Section 4 and detailed 
in the companion paper (Yan et al. 2004), experiments 
were performed to test the effect of PID control on the 
resonant cavity flow. The control routine was 
developed as a Simulink code and implemented in the 
dSpace system. Initially the best control parameters 
were determined by manually adjusting the gains of the 
proportional (P), integral (I), and derivative (D) terms. 
The integral term did not have any significant effect on 
the system response, most probably due to the actuator 
dynamics.  It was found that the derivative term could 
be replaced with a first order filter with an adjustable 
cut-off frequency to have a PD-like controller of the 
form: 
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sKKsC −

+
+=

1
)(

τ
τ

 (5.1) 

With zero time delay between the P and D channels 
(h=0), its optimal parameters were found to be Kp=8, 
Kd=0.04, and τd=200. This controller was successful in 
eliminating the main frequency of oscillation (third 
Rossiter mode), but led to strong oscillations in the 
neighborhood of the second Rossiter mode, an expected 
result since this linear controller was designed for the 
baseline case and thus the potential excitement of the 
other Rossiter modes was not taken into account. By 
adding a time delay of h=260 µs to the “derivative” 
term we introduced a 180 degree phase shift for signals 
operating in the neighborhood of the second Rossiter 
mode and we effectively placed a “zero” at the 
corresponding frequency. A schematic diagram of this 
controller and its effect in reducing the peaks of the 
Mach 0.3 flow are given in Fig. 5.8. For ease of 
comparison in this figure the voltages corresponding to 
the P, D, and the control terms were processed to yield 
spectra similar to the SPL ones from pressure 
transducers located at the actuator exit and in the cavity 
floor. Combination of the 260 µs phase shifted P and D 
signals produces the control signal whose spectrum is 
characterized by frequency cancellation at 1.93 kHz 
(zero placement in the neighborhood of the second 
Rossiter mode). Cancellation occurs also at the odd 
harmonics of this frequency while modest 
reinforcement is produced at the even harmonics. The 
SPL spectrum of the corresponding acoustic signal 
emerging from the actuator exit slot is rather complex 
and reflects the effect of the actuator transfer function. 
It should be noted that the highest spectral peak of this 

signal occurs at a frequency of about 3.80 kHz, a value 
near a range of optimal frequencies for spectral peak 
reduction. Due to the relatively large value of τd, the PD 
like controller above acted like a P-P controller with 
individual delay terms that was also implemented and 
produced analogous results. 

Finally, it is interesting to note that the 
performance of these controllers was also quite 
satisfactory at Mach numbers with multi-mode 
resonance or at higher Mach numbers exhibiting 
stronger, single-mode resonance. For the discussion of 
the additional linear controllers of the Smith-predictor 
and H∞ form, the reader is referred to the companion 
paper by Yan et al. (2004). 

6. Concluding Remarks 
The main objective of the flow control team at the 

Collaborative Center of Control Science at OSU is to 
develop tools and methodologies for feedback control 
of aerodynamic flows enabling the control of flow over 
air vehicles. The team, composed of OSU, Air Force 
Research Laboratory, and NASA researchers, is taking 
a multidisciplinary approach by assembling people with 
various skills in relevant fields to tackle from the outset 
this challenging problem in a coordinated fashion.  The 
initial application chosen for study is control of the 
large-amplitude pressure fluctuations created in a 
shallow subsonic cavity flow.  The cavity flow has long 
been an attractive problem for researchers due to the 
rich nature of its flow physics and its relevance to many 
practical applications, and it has been explored over 
several decades.  

The coordinated efforts undertaken by our team 
include:  

 numerical simulation of the cavity flow,  
 development of low-order model of the flow 
(currently using data from simulation results, and 
later on from experimental results as well),  

 design of control laws based on the reduced-order as 
well as other models of the flow,  

 an experimental effort to provide further 
understanding of the physics of the flow, to evaluate 
the simulation results, and to implement and test the 
overall control schemes.  

Significant progress has been made in all components, 
which was presented and discussed.  

Both 2-D and quasi-3-D simulations of the cavity 
are being pursued.  Two-dimensional simulations 
provide quick results, but often do not capture the 
correct physics of the cavity flows. Therefore, 2-D 
simulations are being used for preliminary modeling 
work in order to explore various issues associated with 
reduced-order model development and to build up the 
tools that will be used with the three-dimensional 
simulation results when they become available. To date, 



AIAA 2004-0576 

  
American Institute of Aeronautics and Astronautics 

10

2-D simulations are complete for two baseline (no 
actuation) cases with Mach numbers 0.30 and 0.38, and 
two forced cases using a synthetic jet type actuation for 
each of the baseline cases. 

It is desirable (perhaps required) from the 
controller design viewpoint to have separate control 
input terms in the reduced-order model equation, rather 
than having an autonomous reduced-order model 
equation. Mach 0.38 baseline and two forced cases 
were used to look into this issue. These simulation 
results along with a stochastic estimation technique 
were used to investigate the potential use of surface 
pressure measurements with flow-field based reduced-
order model for feedback control purpose. The results 
are quite encouraging. 

While the work on the development of reduced-
order-model based controller design is being continued, 
linear controllers such as H∞, Smith predictor, and PID 
were implemented experimentally with various degrees 
of success. The results showed limitations of linear 
controllers for cavity flow. 

Our earlier experimental work with logic-based 
controller was continued to explore the physics of the 
shallow cavity flows. We also added flow visualizations 
to aid us in this task. The flow forcing results are very 
interesting and clearly show the non-linear dynamics of 
the shallow cavity flow. Forcing the flow using a 
synthetic jet type actuator at the leading edge of the 
cavity at various frequencies, spanning from close to 
the first Rossiter mode to sixth Rossiter mode, produces 
a wide variety of interesting results from total 
suppression of the single dominant mode (third Rossiter 
mode for Mach 0.3 case) to adding various other peaks. 
Interestingly, all the peaks are related to the forcing 
frequency, Rossiter modes, or a combination of the 
forcing frequency and the dominant Rossiter mode, a 
clear indication of non-linear behavior of the cavity 
flow. Phase-locked planar laser sheet flow 
visualizations clearly show the effect of forcing on flow 
structures and the strong correlation of number of 
coherent structures and Rossiter modes, even when the 
modes are not dominant.  
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Figure 3.1 Evolution of the first time coefficient for the model 
obtained solving Eqn. 3.5 with the explicit control input using 5 
POD modes. 

Figure 3.4 Evolution of the cavity floor pressure fluctuations 
estimated for the baseline case by using 5 POD modes. 

Figure 3.2 Evolution of the first time coefficient for the baseline 
case using 5 POD modes by: projecting the flow field onto the 
POD basis (thick line); using Eqns. 3.4 with initial conditions 
from flow field (dashed line); using as initial conditions the flow 
field estimated from pressure measurements (thin line).  

Figure 3.5 Evolution of the cavity floor pressure fluctuations 
estimated for the baseline and forced cases by using 5 POD 
modes.  

Figure 3.3  Evolution of the first time coefficient for the baseline 
and forced cases using 5 POD modes by projecting the flow field 
onto the POD basis (thick line) and by using as initial conditions 
the flow field estimated from pressure measurements (thin line). 
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Figure 5.1: Cutout of the facility showing the 
converging nozzle, the test section, the cavity, the 
actuator layout, and the placement of the Kulite 
transducer.  

Figure 5.2: Rossiter frequencies (lines) and measured 
resonant frequencies (circles) as a function of the 
flow Mach number.  

Figure 5.3: Amplitude of the dominant pressure peak at 
the cavity floor for unforced flow and of the flow forced 
at optimal frequency for peak reduction as a function of 
the flow Mach number. 

Figure 5.4: Variation of the peak SPL value of Mach 0.3 
flow with frequency of sinusoidal forcing at 4 Vrms. 
Continuous thick line is the peak SPL at the cavity floor and 
dotted thin line is the exit-slot velocity u for actuation at 4 
Vrms. 

110

115

120

125

130

135

140

1000 2000 3000 4000 5000 6000

Actuation frequency (Hz)

Pe
ak

 S
PL

 (d
B

)

0

5

10

15

20

25

30

35

u 
(m

/s
)

Forced peak SPL
Baseline peak SPL
Actuator peak velocity



AIAA 2004-0576 

  
American Institute of Aeronautics and Astronautics 

14

(a) (b) 

(f) 

(d) 

(e) 

(c) 

Figure 5.5: Cavity floor pressure spectra of the Mach 0.3 cavity flow under various forcing conditions at 4 Vrms: 
(a) no forcing (baseline); (b) 1000 Hz; (c) 1070 Hz; (d) 1340 Hz; (e) 1830 Hz; (f) 3925 Hz (optimal forcing 
frequency). R1, R2, R3 indicate the Rossiter frequencies, fa the actuation frequency. 
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(a) (b) 

(d) (c) 

(e) (f) 

Figure 5.6: Instantaneous (left) and phase-locked average (right) laser light scattering images of the Mach 0.3 cavity flow 
under various forcing conditions: (a) and (b) no forcing (baseline); (c) and (d) 1830 Hz forcing (2nd Rossiter mode) at 4 Vrms; 
(e) and (f) 3920 Hz forcing at 4 Vrms (4th Rossiter mode and optimal forcing frequency). Flow is from left to right.  
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Figure 5.8: Spectra for Mach 0.30 cavity flow system excited by the PD-like controller with time delay of 260 
µs between the P and D terms. The P, D, and control signals were processed as the pressure transducers signals. 
Reference dB levels are provided only for the SPL spectra of the pressure transducer signals. 

(b) (a) 

Figure 5.7: Cavity floor pressure spectra of the unforced Mach 0.32 cavity flow (left) and average laser light scattering image 
(right) of the same flow. F1 and F2 indicate frequencies not associated to resonance. Flow is from left to right.  
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